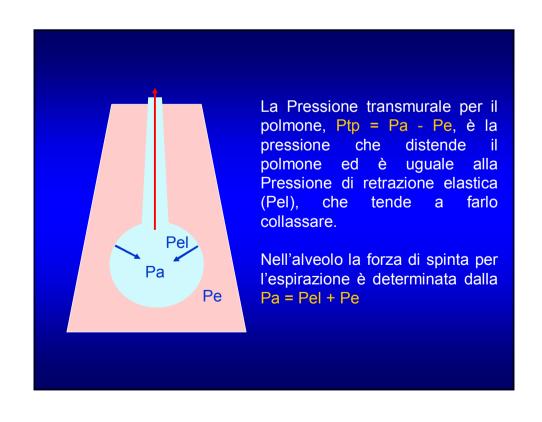
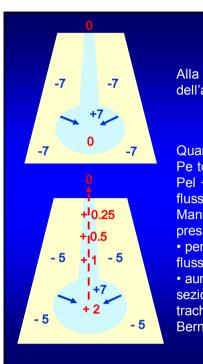

Resistenze delle vie aeree

Valutabili in condizioni dinamiche, quando si crea flusso.

Anche per il flusso nelle vie aeree è applicabile l'equazione di Poiseuille $F = \Delta P \pi r^4 / 8 \eta I$

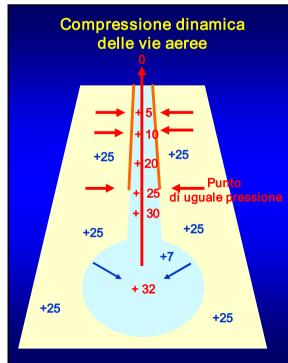

- 70% delle resistenze nei bronchi maggiori fino ai bronchi di medio calibro
- 30% delle resistenze nei bronchi di piccolo calibro



Le Resistenze delle vie aeree aumentano durante l'espirazione forzata

- Le vie aeree più piccole collassano sotto l'azione della Pe che diventa positiva
- A bassi volumi diminuisce la forza di retrazione alveolare e quindi la trazione meccanica sulle vie aeree

Fine inspirazione


Alla fine dell'inspirazione, la Pa all'interno dell'alveolo è 0, la Pe è -7 e la Pel +7.

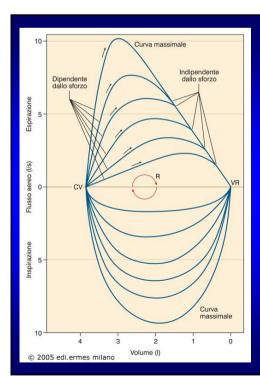
Espirazione passiva

Quando la muscolatura inspiratoria si rilascia, la Pe torna al valore pre-inspirazione (-5) e la Pa = Pel + Pe, sale a + 2 [+7 + (-5)], determinando il flusso espiratorio quando la glottide si apre.

Man mano che aria esce dagli alveoli la pressione delle vie aeree diminuisce per:

- perdita di energia nel vincere le resistenze al flusso
- aumento della velocità al diminuire dell'area di sezione trasversa delle vie aeree verso la trachea, che determina per il Principio di Bernoulli un'ulteriore caduta della P

Espirazione forzata

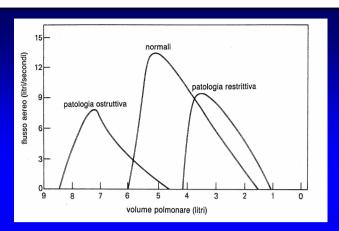

Nell'espirazione forzata la Pe positiva, diventa con consequente aumento della Pa e del flusso espiratorio. C'è un punto, tra gli alveoli e la bocca, in cui la P delle vie aeree è uguale alla Pe (punto di uguale pressione). Oltre questo punto, la Pe maggiore della P delle vie vengono aeree che compresse (compressione dinamica delle vie aeree).

Maggiore è lo sforzo espiratorio, più positiva diventa la **Pe** e il punto di uguale pressione, si sposta sempre più verso le zone più profonde del polmone.

Flusso espiratorio massimo

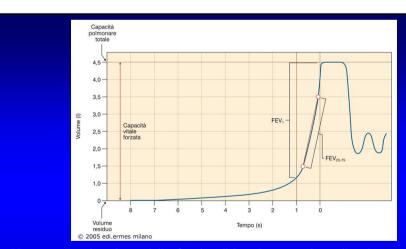
Quando un soggetto espira forzatamente, il flusso espiratorio raggiunge un massimo, oltre il quale non vi è ulteriore possibilità di aumento, per quanto aumenti lo sforzo espiratorio.

Il flusso espiratorio massimo è tanto maggiore quanto è maggiore il volume inspirato e si riduce progressivamente, man mano che si riduce il volume polmonare, a causa della compressione delle vie aeree.



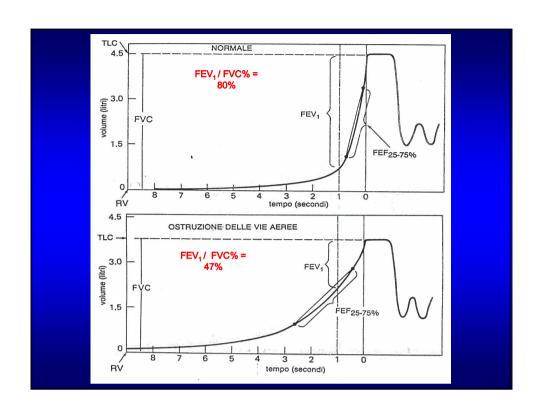
Diagrammi **flusso-volume** durante la respirazione normale (R) e in condizioni di espirazioni forzate a partire dalla CV con sforzi espiratori diversi

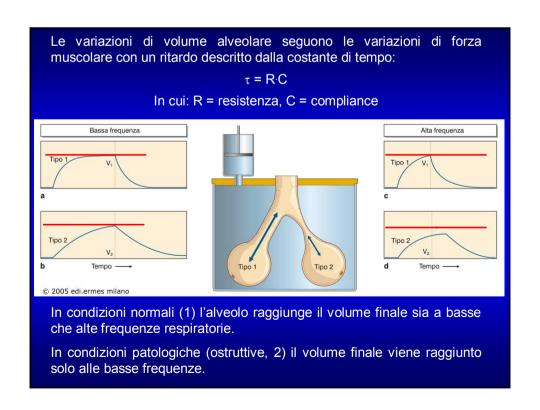
Durante le espirazioni forzate, il flusso aumenta rapidamente fino ad un massimo, che dipende dallo sforzo compiuto, e poi diminuisce per il resto dell'espirazione e diventa indipendente dallo sforzo espiratorio.

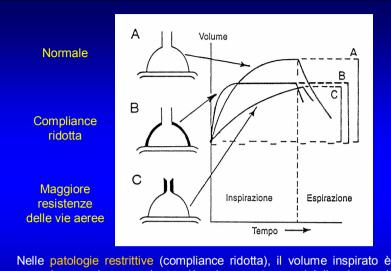

L'indipendenza dallo sforzo è dovuta alla compressione dinamica delle vie aeree, che comporta un aumento della R al flusso.

Nel soggetto sano la limitazione di flusso si osserva solo durante l'espirazione forzata

Nelle **patologie ostruttive** (aumentata resistenza delle vie aeree, asma, enfisema, ecc.) aumenta la CPT e il VR, perché il soggetto ha difficoltà ad espirare. Il flusso massimo è ridotto per la parziale ostruzione di gran parte delle vie aeree e la parte sforzo dipendente è alterata, perché le vie aeree collassano più facilmente.

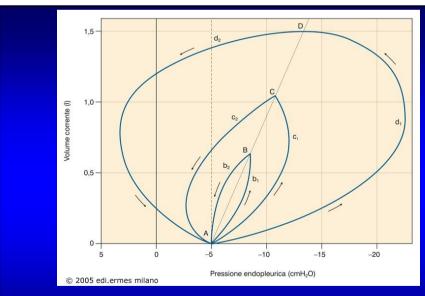

Nelle **patologie restrittive** (maggiore resistenza elastica, fibrosi ecc.) sono ridotti sia la CPT che il VR, per la maggiore difficoltà ad espandere il polmone. Il flusso espiratorio massimo è minore perché sono minori i volumi raggiunti ma la parte sforzo dipendente della curva è praticamente normale.

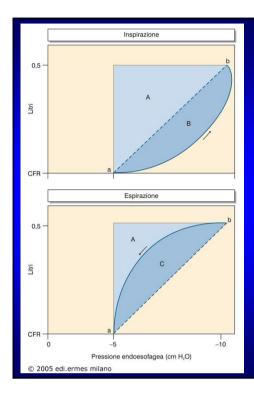



Un test di valutazione della funzionalità polmonare è quello che consiste nel registrare, mediante uno spirometro, la capacità vitale forzata (FVC) che è il volume espirato forzatamente partendo dalla CPT

Si valuta il **FEV**₁ (volume di aria espirato nel primo secondo) e si esprime come FEV₁/FCV% (indice di Tiffeneau):

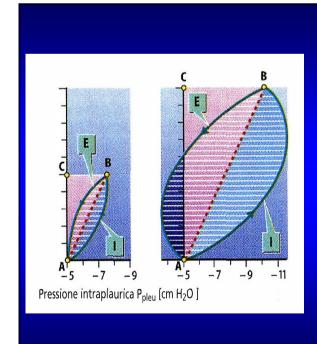
Nel soggetto normale è 70-80% (70-80% del volume espirato viene espulso nel primo secondo), mentre nelle patologie ostruttive risulta minore.





Nelle patologie restrittive (compliance ridotta), il volume inspirato è minore del normale, ma viene raggiunto più velocemente, perché il polmone ha maggiore difficoltà a distendersi.

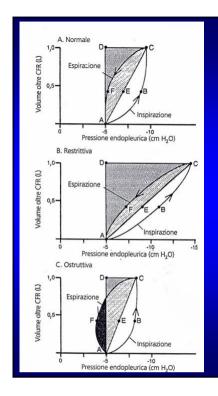
Nelle patologie ostruttive (maggiore resistenza delle vie aeree), il volume inspirato è minore del normale perché l'elevata resistenza ne ritarda il raggiungimento (l'inspirazione finisce prima che tale volume venga raggiunto).


Relazione P-V dinamica di un ciclo respiratorio a riposo e durante iperventilazione moderata ed intensa. L'ansa respiratoria si allarga a causa dell'aumento del volume corrente e della maggiore resistenza delle vie aeree che si verifica a frequenze respiratorie maggiori.

Calcolo del lavoro inspiratorio ed espiratorio durante respirazione tranquilla

Inspirazione: l'area A rappresenta il lavoro fatto dalla muscolatura inspiratoria sul solo polmone per vincere le resistenze elastiche, mentre l'area B quello per vincere le resistenze delle vie aeree (non elastiche).

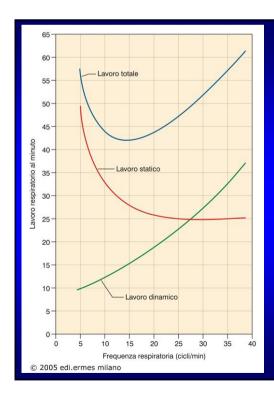
Espirazione: l'area C rappresenta il lavoro necessario a vincere le resistenze non elastiche (delle vie aeree). In condizioni normali il lavoro espiratorio è minore dell'energia elastica accumulata durante l'inspirazione (area C all'interno dell'area A), pertanto l'espirazione è passiva.



Il Lavoro respiratorio corrisponde all'area sottesa dalle curve nel diagramma P-V

Area rosa ABCA = Lavoro inspiratorio contro le resistenze elastiche

Area tratteggiata ABA = Lavoro in- ed espiratorio contro le resistenze delle vie aeree. In condizioni normali il lavoro espiratorio è minore dell'energia elastica accumulata durante l'inspirazione, pertanto l'espirazione è passiva.


Area blu tratteggiata = Lavoro compiuto dai muscoli espiratori durante una respirazione a frequenza maggiore.

Condizioni normali

Nelle patologie restrittive, aumenta il lavoro elastico, il soggetto compensa riducendo il volume corrente ed aumentando la frequenza respiratoria

Nelle patologie ostruttive, il lavoro elastico è normale, aumenta quello per vincere la resistenza delle vie aeree, l'espirazione è attiva, con intervento della muscolatura espiratoria. Il soggetto compensa aumentando il volume corrente e riducendo la frequenza respiratoria

La ventilazione alveolare:

[(Vc-Vd) x F] in condizioni normali è circa 5 l/min

Lo stesso valore può essere ottenuto variando il volume corrente e la frequenza respiratoria.

Con l'aumentare della frequenza, il lavoro elastico (statico) diminuisce perché si riduce il $V_{\rm C}$, ma aumenta il lavoro non elastico (dinamico) perché aumenta il flusso nelle vie aeree

Il lavoro totale (Ls + Ld) è minimo per frequenze respiratorie normali (12-14 atti/min).